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The need to model the rate dependence and observed creep and plasticity

interactions exhibited by materials, particularly at elevated temperatures,

has greatly stimulated the development of numerous viscoplastic models. These

models, in general, provide a better description of high-temperature time-

dependent inelastic behavior of materials.

Owing to their lightweight and enhanced strength, the metal-matrix com-

posite (MMC) materials are attracting considerable attention for high-tempera-

ture applications. As a result of concerted and leading efforts in this direc-

tion at NASA Lewis, a metal-matrix composite model was developed by Robinson

and Dully (1989). (See figs. 1 and 2.) The concept of damage evolution has

recently been included by Robinson (personal communication) in the above

model. The evolution of damage is assumed to be governed by a Kachanov-type

equation. (See fig. 3.)

The highly nonlinear and mathematically "stiff" nature of the constitutive

equations of viscoplastic models renders analytical solutions of problems, in

general, Sntractable. It, therefore, becomes mandatory to develop suitable fi-

nite element or other numerical solution technologies to be able to use these

models in component design. With this objective in mind, the above viscoplas-

tic damage model was implemented in the finite element code, MARC. Both uniax-

ial (creep) and mult[axial (an internally pressurized thick-walled cylinder)

problems were analyzed using this implementation. Some preliminary results

are presented here. These results consider monotonic (constant) loadings. The

study of damage accumulation under variable (cyclic) loadings is being under-

taken. The results of this study will be presented later.

Figure 4 shows the experimental data (Cooper, 1966) utilized to determine

the values of anisotropic parameters that appear in the model.

The creep curves including damage for four fiber orientations are depicted

in figure 5. As expected, the minimum creep occurs when load is applied in a

direction parallel to the fibers.

The tangential strains at the inner radius of a thick-walled MMC-cylinder

for four fiber orientations are plotted in figure 6. The damage is included.

The cylinder exhibits the maximum creep resistance when the fibers are oriented

in the circumferential direction, perpendicular to the ax_s of cylinder.

Figure 7 shows the time-to-failure for the thick-walled cylinder for the

same fiber orieDtation angles. As expected, the life of the cylinder can sub-

stantially be increased by orientating the fibers in the circumferential direc-

tion, perpendicular to the axis of cylinder.
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The results, although qualitative, indicate that significant benefits in
creep_resistance and service life can be achieved by using MHCmaterials as
structural materials for high-temperature design.

The finite element technology developed herein is proposed to be applied
to aerospace structural components _ubjected to (cyclic) thermomechanical load-

[ngs. The results of these analyses will be reported subsequently.
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METAL MATRIX COMPOSITE MODEL
INCLUDING DAMAGE

FLOW LAW
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Figure 1
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METAL MATRIX COMPOSITE MODEL
INCLUDING= DAMAGE

EVOLUTION LAW
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AND WHERE
di = A UNIT VECTOR ALONG THE PREFERRED DIRECTION AT A

POINT OF THE MATERIAL
,., AND _ = ANISOTROPIC PARAMETERS cD-_-393oo

Figure 2

METAL MATRIX COMPOSITE MODEL
INCLUDING DAMAGE

DAMAGE LAW

= - A'EP/_q

= x (N,S)

IN WHICH DAMAGE VARIABLE.

WHERE

N =

S =

D=I -_,

MAXIMUM TENSILE STRESS TO THE FIBER DIRECTION

MAXIMUM LONGITUDINAL SHEAR STRESS ALONG FIBER DIRECTION

FORM OF FUNCTION x USED:

E =,k<N) + (1 -,k) S

Figure
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YIELD STRESS OF TUNGSTEN/COPPER FOR
VARIOUS FIBER ORIENTATION ANGLES
o_ = 7; EXPERIMENTAL DATA FROM COOPER (1966)
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CREEP CURVES INCLUDING DAMAGE
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TANGENTIAL STRAIN AT INNER RADIUS OF
METAL-MATRIX COMPOSITE CYLINDER

(INCLUDING DAMAGE)
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ROBINSON'S T-- - -
ME-_L-MATRIX COMPOSITE

VISCOPLASTIC DAMAGE MODEL
THICK-WALLED CYLINDER
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